
The SAP VM Container is an application server
framework that uses a new paradigm of Process
Attachable Virtual Machines (PAVMs) to combine
high scalability with strong isolation between user
sessions. In this short paper, we present the design and
implementation of the PAVM paradigm for Java virtual
machines.

1 Introduction

When it comes to mission critical large enterprise
server environments, robustness and scalability become
main concerns for server virtual machines.

From a most general point of view, enterprise servers
can be characterized as request processing engines,
serving large numbers of (typically small) user requests
that belong to user sessions. The actual request proc-
essing involves running user code (e.g. Servlets, EJBs)
in a virtual machine. Request throughput is the main
objective for scalability, which is traditionally achieved
with thread pool based architectures.

System robustness necessarily requires strong isola-
tion between user sessions, something that is often hard
to achieve if a large number of user sessions are run
within a single virtual machine.

On the other hand, operating systems provide near
perfect isolation for processes - even a crashing process
does not affect any other process nor does it leave
behind resource leaks. Why not just provide each user
session with a virtual machine and an OS process of its
own ? The answer is obvious: resource consumption
and OS scheduling overhead make this approach infea-
sible with respect to scalability. OS processes are just
not designed to model entities as fine grained as user
sessions.

The SAP VM Container introduces a new paradigm
designed to resolve the dilemma between isolation and
scalability: Using a dispatcher process and a small pool
of work processes, each user session is provided with
its own Process Attachable Virtual Machine (PAVM):
a VM that can be attached to and detached from OS
processes at very low cost. User requests are dis-
patched to work processes, which attach the appro-
priate PAVM and have it process the request.

2 Process Attachable VM

In order to make a VM process attachable, the usual
affinity between a VM and the OS process it runs in
needs to be removed. The PAVM paradigm can be
regarded as a variation of the Orthogonally Persistable
VM paradigm [1]. When a VM is detached from a work

process, its computational state is persisted in a way
that allows another work process to unpersist it at ex-
tremely low cost. The key to achieve this is to use
shared memory that is accessible to all work processes
to store persistent VM states.

When a user session starts, a PAVM is created with a
private shared memory block, where it keeps its full
computational state. The PAVM's heap and stacks are
allocated directly from this session memory. That
makes the transition to and from persistent state essen-
tially a no-op for the PAVM's memory - the work
process just has to map the session memory into its
address space. No data is actually moved or copied.

I/O resources (file handles, sockets) have to be ex-
plicitly persisted. This is achieved by introducing an
additional level of indirection - what the VM sees as a
file or socket descriptor is actually just a handle that is
either persistable by itself (for plain files) or employs
the services of a central resource manager (for sockets
and pipes). Descriptor passing provides for an efficient
implementation. The resource manager notifies the
dispatcher once the I/O request is completed.

Threads and monitors in user code deserve some
special attention. Native OS threads cannot easily be
persisted to shared memory, so PAVMs can only
provide "green threads" functionality to user code. All
data structures related to thread management and
scheduling (including the threads' call stacks, mutexes
and condition variables for Java monitors) are kept
directly in session memory. This includes both the Java
stacks and the C stacks used by the VM implemen-
tation, e.g. for the JNI implementation of dynamic
method invocation. OS coroutines (see [2] for Unix)
are employed to control the location of C stack
memory.

Thread scheduling is coroutine-based and thus non-
preemptive, which seems a drawback at first glance.
But it turns out that for the special case of a request
processing engine as described above, preemptive
scheduling is actually less desirable than one might
expect. In order to maximize request throughput (as
opposed to fairness), a batch processing strategy is
employed instead: within each PAVM, threads yield
cooperatively to the thread scheduler when entering
wait state (i.e. blocking on I/O or a Java monitor)1.

 The coordination between blocking I/O calls and the
thread scheduler is part of the I/O redirection mecha-

1 Very coarse preemption (implemented with timers and signals) is
additionally used to prevent user sessions from monopolizing a work
process by hogging the CPU.

SAP VM Container: Using Process Attachable Virtual Machines
to Provide Isolation and Scalability for Large Servers

Norbert Kuck, Harald Kuck, Edgar Lott, Christoph Rohland, Oliver Schmidt

SAP AG
Walldorf, Germany

{norbert.kuck, hq, edgar.lott, cr, oschmidt}@sap.com

nism described above. Mutexes and condition variables
are implemented without using OS locking primitives
as simple scheduler-controlled variables in session
memory.

Thread scheduling continues for a PAVM until all its
threads have entered wait state, indicating that the user
request is either completed or waiting for I/O. In either
case, the PAVM can be detached from the work
process. The dispatcher will reattach it to some work
process when the next user request comes in resp.
when the I/O request is completed.

3 Benefits

The PAVM paradigm essentially combines the advan-
tages of threads and processes, while omitting many of
their respective drawbacks. The process pool ensures
good CPU usage for SMP systems. Green threading
within user sessions provides for lightweight schedul-
ing and gives full control over batch/fairness behavior.
Contention is limited to user session scope, even for
system activities like garbage collection. Full isolation
and memory protection is granted to user sessions (a
work process only maps the session memory for a
single PAVM at a time). Even a crashed work process
can easily be restarted, only invalidating its current
user session. Standard debugging and profiling tools
can easily be used on a per-session basis.

4 Limitations

The PAVM paradigm relies on assumptions that are
specific to the request processing engine model out-
lined above. It is not suited for a general purpose Java
VM. Even for some typical Java server scenarios (e.g.
non-distributable Servlets), strong session isolation is
not compatible with application semantics.

JNI code can only be run within a PAVM if con-
forming to a fairly complex set of rules regarding
memory usage and I/O.

5 Optimizations and related work

The JNI restriction can be lifted to allow for arbitrary
JNI user code using the redirection techniques intro-
duced by Czajkowski et al. [3].

The considerable overhead for class loading, verifi-
cation and resolution for each PAVM can be reduced
by keeping type information (i.e. the runtime repre-
sentation of all loaded classes) in shared system mem-
ory common to all PAVMs. This technique is expected
to be introduced with Sun's Hotspot 1.4.1 VM [4] and
is applicable to PAVM as well.

Even with optimized class loading, PAVM initializa-
tion is still fairly expensive (if only for the numerous
static initializers in system classes). This can be
avoided by initializing each PAVM's session memory
from a suitable "template" image, which is easily ob-
tained by copying the session memory of a freshly
initialized "master" PAVM at system startup.

This approach can be taken even further. Following
the work of Dillenberger et al. [5], PAVMs could be

implemented to be serially reusable after the corre-
sponding user session ends. This is particularly effec-
tive for very short user sessions or stateless user
requests.

An API for Java isolation is currently being defined
by JSR 121 [6]. We expect that the PAVM paradim can
assist in the implementation of JSR 121 for server
environments.

6 Conclusion and work in progress

We have presented a short overview of the PAVM
paradigm within the SAP VM Container, its benefits
and restrictions and outlined possible optimizations
with respect to related works.

The PAVM paradigm is currently being implemented
for Java VMs to be part of the SAP Web Application
Server, where the SAP VM Container technology has
been used quite successfully for more than 10 years as
the foundation for SAP's R/3 system, an application
server running a comprehensive suite of business
applications by means of a SAP specific programming
language and virtual machine named ABAP (Advanced
Business Application Programming).

Sun's CVM codebase from J2ME is used as the
starting point for SAP's PAVM implementation. A
working prototype running Servlets and JSPs demon-
strates feasibility (5/2002), but does not yet allow any
performance measurements and still lacks the possible
optimizations outlined above.

References

[1] M. Jordan, M. Atkinson: Orthogonal Persistence
for the Java Platform: Draft specification.
http://www.sun.com/research/forest/index.html,
October 1999

[2] The Open Group: ucontext manual page. In: Single
Unix Specification, Version 2.
http://www.opengroup.org/onlinepubs/007908799/xsh/
ucontext.h.html

[3] G. Czajkowski, L. Daynès, M. Wolczko: Automa-
ted and Portable Native Code Isolation. Sun Microsys-
tems Laboratories Technical Report 01-96, April 2001

[4] G. Hamilton: The Java 2 Platform, Standard Edi-
tion (J2SE) 1.4 Release, and Beyond. Java One pres-
entation, April 2002

[5] D. Dillenberger et al: Building a Java virtual ma-
chine for server applications: The Jvm on OS/390.
IBM Systems Journal Vol 39 No 1, 2000

[6] JSR 121 expert group: JSR 121: Application Isola-
tion API Specification.
http://www.jcp.org/jsr/detail/121.jsp

