Isolate use case:
Resource Management Research

Grzegorz Czajkowski
Sun Research

RM API for the Java Platform

* Enabled by the JSR 121

° An isolate is a convenient foundation for delivering
resource management

e Accounting is unambiguous
°No sharing => only one owner of any unit of the resource
© Only one owner => reclamation upon termination easier

° The smallest unit of resource mgmt is an isolate

° Arbitrary collections of isolates can be grouped
to share a resource policy

RM API in a Nutshell

°* RM API for the Java platform: programmatic
control over resources available to computations

¢ Extensible (can define new resource types)

e Flexible (can express a variety of policies)

e Abstract (decouples management from control)
e Platform-independent

° Based on isolates (no sharing eases accounting)

° Managed tradeoff between accuracy and cost
e Accommodates various styles of resource impl's

A Taste of the API

Public static void main(String[] args) { // class Manager
String R = args[0]; // get name of resource to manage
Isolate iB = new Isolate(App", new Strlng[O]) /[new |solate not started yet

ResourceDomain rd1 = ResourceDomain.newDomain(R); Creatt:: EHELT ‘_10’"3"1
rd1 bind(B): and bind iB to it

long reservation = rd0.getReservation().getValue(); Reserve 100 units of
n/ation - 100) R for rd1

rd1. setReservanon(lOO)
ConsumeCallback.Pre preCallback =
new ConsumeCallback.Pre() {
public long preConsume(ResourceDomain rd, In(:_'m current lona nronnsed) {

return current; // veto the request reate a constraint: reject
requests to consume more

s than 100 units of R
Tngger tngger = Trlggers newAbsquteUp(lOO)

rd1 setConsumeActlon(actlon)
iB.start(new Link[] {}); // set-up done; start the new isolate 4

2

Privileged applications would be written this way:
create other isolates and set up policies controlling
resource consumption.

° |solates bound to resource domains

° Resource domain = resource consumption policy
° Independent bindings for different resources

e Dynamic binding >

@ RD_CPU
IsolateA
RD_CPU1
IsolateB
RD_CPU2

We'll discuss resource domains in details later; let's just say
for now that they encapsulate a resource usage policy.

Poe

Left top - single isolate, single domain.

Left bottom - three isolates, two domains.

Right — seven isolates, five domains for three resources.

A, B, and C bound to the same domain for CPU (RD_CPU1),
so they share the same policy; independent of what

G's policy wrt CPU is. A and B share the same domain for
CPU, but not for Net. In fact, A is not bound to any domain
for Net.

Requesting a Resource: no RM API

Client
(e.g. invoking new Socket())

Request Reply
(success or exception)

Resource implementation
(e.g. java.net classes)

The picture is the same regardless of whether the
request is mediated by the JDK classes, the runtime
(heap), OS (CPU), middleware

(JDBC connections), etc.

Requesting a Resource: RM API

Client
(e.g. invoking new Socket())

Request Reply
(success or exception)

Resource implementation
(e.g. java.net classes)

Can the request ' Decision (yes, no, or
be granted? partial grant)

Resource domain for the requested resource

- reservation

- consume actions (constraint, notifications)

- resource attributes

- resource availability 7

Example: Number of Open

Sockets

// Opening a socket - code added to java.net.PlainSocketimpl

this.rd = ResourceDomain.currentDomain(SOCK_NUM);

if (rd == null) {
socketCreate(stream); No control imposed
return;

}
if (rd.consume(1) != 1) Request
throw new ResourceException("RM: can't open socket"); denied

try {
—socketCreate(stream);

} catch (Throwable t) { Return quantity requested
rd.unconsume(1); if the creation fails

throw t;

}

Note that the client's API to using the resource hasn't
changed; all RM API work is done under the hood.

Other Resources

°* CPU time

° QOur prototype: polling
°* Heap memory

e Impact of the architecture of the collector

e Our prototype: granularity = new gen capacity
* Network traffic

* Can express non-standard resources

° Power consumption
° Number of pending servlet requests

° Number of summer interns

Note: first time we've mentioned “implicit” resources;
main point is that CPU is a bit different than the other
resources we've mentioned (no API to request units

of).

Status (June'03)

* Technical report to be published very soon

° Feedback very welcome
° Pure Java prototype
° Very good performance
e Minimal changes to existing resource impls
° Existing code runs unmodified
* Experimentation done on top of MVM
e Experimental many-to-one impl os isolates
° |solates were essential to realize RM API
o N i t/ ISR nl i 10

